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Abstract 

The outstanding role of P. P. Ewald in the develop- 
ment of X-ray diffraction theory is described. Princi- 
pal schemes describing the relation between structure 
and diffraction pattern for various classes of objects 
- crystals, liquid crystals, macromolecules in solu- 
tion, protein crystals - are presented. A brief survey 
of the method of electron diffraction structure analy- 
sis is given. The results of several X-ray structural 
investigations of liquid crystals are considered. The 
basic principles of structure derivation from diffrac- 
tion data are described for macromolecules in 
solution. The possibilities of X-ray crystallography 
for proteins are illustrated by an investigation of 
catalases. 

Introduction 

The basic modern data describing the atomic struc- 
ture of matter have been obtained by the use of 
diffraction methods - X-ray, neutron and electron 
diffraction. 

At present more than 100 000 atomic structures of 
various natural and synthetic crystals - inorganic, 
metallic, organic and biological - have been 
determined. Diffraction methods have been applied 
to the study of the atomic structure of substances in 
a less ordered state - high-molecular-weight poly- 
mers, liquid crystals, amorphous substances and 
liquids, and isolated molecules in vapours or gases. 
This tremendous amount of material is used for both 
the solution of problems concerning the relation 
between the structure of a given substance in the 
crystalline state and its properties, crystal-physical 
and crystal-chemical generalizations, and the devel- 
opment of solid-state physics and physics of the 
condensed state in general. Investigation of bio- 

* Editorial note: This invited paper is one of a series of com- 
prehensive Lead Articles which the Editors invite from time to 
time on subjects considered to be timely for such treatment. 

logical substances has become of exceptional import- 
ance for molecular biology and medicine. 

All these achievements would have been impos- 
sible without the rapid development of the theory of 
diffraction, structure analysis of crystals and less- 
ordered substances, the discovery of new experimen- 
tal possibilities, and the development of the diffrac- 
tion technique. Experimental investigations into the 
atomic structure of matter are based mainly on the 
kinematical theory of scattering, whereas the ideal 
and real structures of single crystals are analyzed on 
the basis of the dynamical theory. 

Development of the theory of diffraction in the works 
of P. P. Ewald 

Considering the development of diffraction theory, 
we must pay tribute to the great contribution made 
by an outstanding physicist and crystallographer 
Peter Paul Ewald. Working at Munich University 
under A. Sommerfeld and still a very young scientist, 
from 1911 onwards he investigated the transmission 
of electromagnetic radiation through crystals. 

In 1912, through the experiments of von Laue, 
Fridrich and Knipping, the diffraction of X-rays in 
crystals was discovered. In 1913 the first in the series 
of Ewald's brilliant works appeared - 'Zur Theorie 
der Interferenzen der Rrntgenstrahlen in Kristallen' 
(Ewald, 1913). He developed the theory, from the 
case in which the wavelength is much greater than 
the lattice period to the case of X-rays. He created a 
system of remarkable simplicity and clarity which we 
now call the Ewald sphere and Ewald construction 
(Fig. 1.). He wrote: "In einem Critter mit den Tei- 
lungen zr/a, 7r/b, ~r/c, ('reziprokes Gitter') schlage 
man um den Punkt (a, fl, y) die Kugel, welche durch 
den Nullpunkt des Gitters geht. Liegen auf der 
Kugelfl/iche noch andere Gitterpunkte (10, m0, no), so 
treten im Kristall Wellen, mit maximaler Intensit/it 
auf, die die gleiche Richtung wie die Verbindungs- 
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146 ATOMIC STRUCTURE OF MATTER 

linien von (lo, mo, no) zum Mittelpunkt der Kugel 
haben." 

Later Ewald considered the problems of X-rays 
passing through a crystal and laid the foundations of 
the dynamical theory of X-ray scattering, which, as 
we know, deals with the interference of all diffracted 
beams arising in the crystal. He developed these 
concepts in a number of later works (Ewald, 1916, 
1917, 1920, 1921, 1924, 1933). 

The problem of X-ray crystal optics was solved by 
analyzing the vibrations of resonators (dipoles) in the 
crystal lattice. The occurrence and propagation of 
elementary waves caused by these vibrations were 
considered as vibrations of the system proper. The 
system of vibrating dipoles and the waves passing 
through it are self-consistent. Ewald's theory 
explained the dispersion of the incident wave in the 
crystal, transfer to multi-wave scattering, and the 
concept of the dispersion surface, that is, practically 
all scattering phenomena in ideal crystals. Ewald also 
developed the theory of the reciprocal lattice and 
introduced the apparatus of Fourier transformation 
to the theory of diffraction (Ewald, 1933). 

Below I shall touch upon several general principles 
of structure analysis and present the results of some 
theoretical and experimental investigations carried 
out by myself and my colleagues at the Institute of 
Crystallography of the USSR Academy of Sciences. 

Diffraction from crystals 

The most ordered atomic structure with a three- 
dimensional periodicity is represented by crystals, 
while the least ordered structure is characteristic of 
amorphous and liquid substances. 

A schematic representation of the connection 
between the structure of the crystal p(r) and scat- 
tering intensities lma (at kinematic scattering) is given 

in Fig. 2. (Here and in similar schemes hereafter we 
assume that all functions describing a real experi- 
ment are taken into account and I = IFI 2 values have 
been obtained.) The discreteness of the Ima peaks is 
explained by the long-range order (three-dimensional 
periodicity) of the atomic structure of the crystal 
which exists despite local disorder, i.e. thermal dis- 
placements of atoms from their equilibrium positions 
(see Fig. 9). At registration of the intensities only 
IFhkA 2 can be measured, and the phases of the Fhk I 
values are lost. Mathematically intensity can be 
regarded as the Fourier transform of the Patterson 
function Q(r). 

Electron diffraction structure analysis (EDSA) 

Analysis of the atomic structure of crystals by 
electron diffraction (ED) began its development as a 
method independent from X-ray analysis by the end 
of the 1940's-beginning of the 1950's (Pinsker, 
1953; Vainshtein, 1956, 1964). 

EDSA differs from X-ray structure analysis in that 
it deals with the strong interaction of electrons with 
the substance. Electrons are scattered at the electro- 
static potential of a crystal created by positively 
charged nuclei and negatively charged electron shells, 
while X-rays just 'feel' the electron density of an 
object. The samples used are from 50 to 500 A, thick. 
This permits investigation of crystals and substances 
that cannot be obtained as single crystals in a high- 
dispersion state. Special electron diffraction cameras 
and electron microscopes are used for such investiga- 
tions. 

One of the basic features of high-energy ED 
(accelerating voltage -60-100 kV) is the short wave- 
length of the electrons used - 0.05/~ or less. There- 
fore Ewald's sphere practically degenerates into a 
plane, and the electron diffraction pattern is the 
planar cross-section of the reciprocal lattice (Fig. 3). 
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Fig .  1. T h e  E w a l d  s p h e r e  in t h e  r e c i p r o c a l  l a t t i ce  ( o r i g i n a l  p i c t u r e ,  
E w a l d ,  1913).  

se l f -convolut ion P a t t e r s o n  
p ( r ) ,  p ( - r )  i n t e r a t o m i c  

S t r u o t ~ e  p ( r )  .~ " Q ( r )  d i s t a n c e s  function 

A m p l i t u d e  F h k  1 = Ibk  I Intensity ".% / "  

Fig.  2. R e l a t i o n  b e t w e e n  t h e  c r y s t a l  s t r u c t u r e  p ( r ) ,  a m p l i t u d e s  Fhkt, 
i n t e n s i t i e s  Ihkt a n d  t h e  f u n c t i o n  o f  i n t e r a t o m i c  d i s t a n c e s  Q( r ) .  
T h e  so l id  a r r o w s  i n d i c a t e  d i r e c t  c o n n e c t i o n  b e t w e e n  t h e  
r e s p e c t i v e  f u n c t i o n s ;  d a s h e d  a r r o w s  d e n o t e  t h e  n e e d  to  i n t r o -  
d u c e  s p e c i a l  m e t h o d s  t o  o b t a i n  t h e  s t r u c t u r e  p ( r ) . . ¢ - i s  t h e  
F o u r i e r  t r a n s f o r m a t i o n .  
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An ED pattern from a mosaic single crystal is 
shown in Fig. 4. ED patterns of the 'oblique' texture 
type (Fig. 5) are also very useful for structural 
analysis. Such patterns are formed when a sample 
has many crystallites with one and the same face 
parallel to the substrate, but which exhibit random 
azimuthal orientation around the axis perpendicular 
to the face. In this case the reciprocal lattice rotates 
around the axis indicated and presents a system of 
rings, the diffraction pattern - an oblique planar 
cross-section of the rings - see Fig. 6 (Pinsker, 
1953; Vainshtein, 1956). 

Procedures for ED pattern indexing and deter- 
mination of the unit cell were established for struc- 
tures with all kinds of symmetry, as well as for 
superstructures (Vainshtein, 1956, 1964; Zvyagin, 
1967). 

Intensity formulae for kinematic scattering were 
derived for ED patterns of all types (Vainshtein, 

1956). The condition for the applicability of kine- 
matical theory is: 

al(@~,/O)lA--1. (1) 
where O~t is the structure amplitude for electrons, 12 
is the cell volume, and A is the crystal thickness. The 
critical value of A for crystals with heavy atoms is 
about 50 A, and about 200--400 A for crystals with 
medium and light atoms. 

The integral intensity Ihkl of spot hk l  on a mosaic 
single-crystal ED pattern is: 

I~,.,ISoS = a El( <t>~,,tla)12A(d,,,<,l,~) (2) 

where Jo is the primary beam intensity, S is the 
irradiated area of the crystal, and a is the averaged 
spread of mosaic blocs. For thick crystals allowances 
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Fig. 3. Ewald construction for X-rays (solid sphere) and electrons 
(dotted sphere). 

Fig. 5. Oblique texture EDP of Sb2S3. 

Fig. 4. Electron diffraction pattern (EDP) from a mosaic single Fig. 6. A scheme of the oblique texture EDP formation - concen- 
crystal of Au, with an oriented AuOH film on it. tric rings in reciprocal space and their planar cross-section. 



148 ATOMIC STRUCTURE OF MATTER 

can be made for the dynamic character of scattering 
electrons. For the diffraction patterns from textures 

• loS A2 A 27rR'sinq~ (3) 

where ~o is the angle of inclination of the specimen 
plane to the beam, L is the specimen-detector dis- 
tance, R' is the distance from the vertical axis of the 
EDP to reflection, and p is the multiplicity factor. 

Making use of Iq'oxp[ and the calculated phases, the 
Fourier synthesis of the potential can be obtained 
(Vainshtein & Pinsker, 1949; Vainshtein, 1954, 1956, 
1964): 

1 
q~(r) = q~(x,y,z) = -~ ~ @hktexp[- 2rri(rHhkt)]. (4) 

hk l  

Fig. 7 shows the Fourier synthesis of the potential 
(projection) for the BaC12.H20 structure, constructed 
for the first time from ED data. 

Analysis of the atomic scattering amplitudes of 
electrons fe reveals several interesting regularities. 

It is known that the charge and potential are 
related by the Poisson equation 

A Z q g ( r )  = - -  4rreLo +(r) - p_(r)] (5) 

whence we can derive the well-known Mott equation 
relating the atomic amplitudes for electrons, fe, and 
for X-rays, fx: 

fe(sin0/a) = (meZ/ZhZ)[Z-fx(sinO/a)]/(sinO/a) 2 (6) 

where Z is the atomic number (electron cloud 
charge). It was established that fe amplitudes [as well 
as peak heights of atomic potentials ~oat(0) for elec- 
trons] are much less dependent on the atomic 
number Z than the atomic amplitudes for X-rays. 

For small sin0/A values fe = Z ~/3, for large sin0/a 
valuesfe = Z. Peak heights ~Oat(0) = Z °75 (Vainshtein, 
1956, 1964). The weak dependence on Z allows one 
to determine the position of light atoms in the 
presence of heavy ones fairly easily. In particular, 
this is how H atoms were located in a number of 
compounds. In the diketopiperazine structure (Fig. 
8) the peak-centre potential ~0at(0 ) is: C = 151, N = 
156, O =  160, H = 3 0 V  (Vainshtein, 1954, 1955, 
1960). 

Atomic amplitudes fe are highly sensitive to the 
ionic state of the atom. Referring back to expression 
(6),fx = Z' at low sin0/A, where Z' is the real charge 
of the electron cell. For ions Z ' =  Z___n, where n is 
the charge of the ion, fe becomes -- _ n, and 

f e  -.-~ ± oo. 
sin 0/A----0 (7)  

Thus, for LizO it was established that the chemical 
bond is not purely ionic, but partly covalent 
(Vainshtein, 1960) and for MgO n=0 .9  (Avilov, 
Semiletov & Storozenko, 1989). 

So far, electron diffraction has been applied to the 
structural investigation of many ionic crystals, of 
various inorganic (Cowley, 1953), organic (Dorset, 
1976, 1983)  and semiconductor compounds, 
carbides, nitrides (Pinsker & Imamov, 1981), various 
minerals and layer silicates (Zvyagin, 1967, 1989; 
Drits, 1987).  Liquid crystals, amino acids 
(Chapyrina, Diakon, Donu & Bydnikov, 1986), poly- 
peptides (Vainshtein & Tatarinova, 1967), and some 
other biostructures (Unwin & Henderson, 1975) have 
also been studied by EDSA. 

I believe that the future of EDSA lies in direct 
precision measurement of the intensities, introduc- 
tion, where necessary, of dynamical corrections, in 

o s "'! 

- a=tdh4 - 

Fig. 7. Fourier synthesis of  the potential of  BaCI2.H20 (projection 
along the c axis). 
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Fig. 8. Fourier synthesis for diketopiperazine - sections of  the 
three-dimensional potential distribution. 
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the combination of electron diffraction and high- 
resolution electron microscopy, and in the use of 
novel techniques, particularly the converging-beam 
method. 

The structure of liquid crystals 

In crystals the positional function of atoms is a 
lattice: long-range order exists (Fig. 9a). Atoms are 
in fixed positions, though displaced from their equi- 
librium positions by thermal motion. Such distor- 
tions are called distortions of the first kind. The 
self-convolution of such a structure, p ( r ) * p ( - r ) =  
Q(r), is given in Fig. 9(b). The last function - distri- 
bution of interpoint distances - is related to the 
lattice points, and the density of its peaks indicates 
the probability of displacement of atoms from their 
equilibrium positions. 

Still, in nature there are many condensed atomic 
molecular systems having no three-dimensional 
periodicity: liquid crystals, liquids, polymers. In them 
short-range order is retained - the nearest neighbour 
distances have a certain mean value (Fig. 9c). The 
interpoint distances distribution function Q(r) (see 
Fig. 9d) already reveals an increase in the peak width 
for the next-nearest neighbours, and at a certain 
distance (correlation radius) the probability of 
finding a particle becomes the same everywhere - the 
long-range order is absent. Such distortions are 
called distortions of the second kind (Hosemann & 
Bagchi, 1962; Vainshtein, 1966). 

i _ _ .T l 1 

4*" a~ ,  l ib .  J &  ,M~ 
~V 1IF ,F ~IW qllr 

(b) (05 

Fig. 9. Distortions of the first and second kind: (a) crystal lattice 
with long-range order and distortions of first kind; (b) self- 
convolution of distribution function (a); (c) structure with 
short-range order - distortions of the second Mad; (d) self- 
convolution of distribution function (c). 

The scattering intensity of such systems - for 
example, of liquid crystals (LC) - is a set of more or 
less diffuse peaks. The relation between the structure 
PLc(r) and intensity I(S) is shown in Fig. 10. In this 
case the intensity depends on the constantly changing 
reciprocal-space vector S, and not on the discrete set 
SH = H, which is found in crystals (Fig. 2). Of 
course, here we have a more difficult problem than in 
the case of crystals. The positions of molecules are 
changing and, as the result, PLC is averaged in time 
and space. The main structural feature of the liquid- 
crystal state is the approximately parallel array of 
molecules with high lability of contacts between 
them. Such packing determines their short-range 
order and can be characterized by the statisitical 
function W(r) of side distances between the molecu- 
lar centres and the function r(z) of the distances 
between the molecular centres along the axis. The 
orientation function f(to) of the molecular axis, 
which is statistical in character, should also be intro- 
duced. For liquids it is spherically averaged, and for 
high-molecular-weight polymers and liquid crystals it 
has a cylindrical symmetry as the result of averaging 
around the molecular axes of the LC. Accordingly, 
the distribution of intensity in reciprocal space I = 
I(R,Z) is also cylindrically symmetrical. Fig. 11 
shows the structural models of nematic and smectic 
LC and the optical diffraction from them which 
imitates well the observed X-ray patterns (Vainshtein 
& Chistyakov, 1975). 

The nematic LC molecules (with their parallel 
arrangement preserved) occupy random positions 
along the z axis. In the smectic LC, the molecular 
axes are also nearly parallel to each other, but the 
molecules are packed in layers. The position of layers 

proof(r) *F(S) 
P(r)=Z.6 (r- r j) - positional function of 

l centers of molecules 

f(CO) - orientation function, co = (a, ~, ® ) 

p~(r) = (Pmol[f(co)])* P (r) 

<W(r )>  = < P ( r ) *  P ( - r ) >  
- averaged interpart icles (correlation) function 

cylindrically averaged 
interatomic distances Distribution functions 

Ptc (r) *ptc(-r) function 
p,~ (r) Q (r)~<Q(r,z)> ~ W(r) 

J~r \ --~(z) | ~ of centers of molecules 
J "x~ong z direction 

I (R,Z)  f(a) 
angular distribution 
of molecular axis 

Fig. lO. A scheme illustrating scattering by liquid crystals PLC and 
method of obtaining of the distribution functions. Pmo]: the 
structure of one molecule; W(r): distribution function of the 
projections of the molecular axis onto the base plane; z(z): 
projection of the distribution of molecular centres onto the 
main axis. 
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is described by a one-dimensional pseudoperiodical 
function ~-(z); the ordering of molecules in layers may 
be different. In smectic A LC the molecules are 
perpendicular to the plane of the layer. In smectic C 
LC the molecular axes are inclined to the plane of 
the layer. 

From the intensity distribution along the equator 
I(R) we can derive the distribution function of side 
distances between the atoms: 

2~rrZM(r) = 2zrrZo + 4"tr2r~ i(R)Jo(2~rrR)RdR. (8) 
o 

As the molecular structure is usually known, from 
(1) and (2) we can obtain the function of inter- 
molecular distances W(r) - the projection of molecu- 
lar axes on the plane perpendicular to the principal 
axes. The distribution of intensity I(z) along the 
meridian gives us the function ~-(z). The angular 
density of arc reflections determines the axial spread 
f(a) .  

An example of the radial function W(r) of 
distances between the molecular axes is given in 
Fig. 12. This is a nematic LC - p - a z o x y a n i s o l e  
(PAA), oriented by a constant electric field 
(4000 V cm-])  (Vainshtein, Chistyakov, Kosterin & 
Chaikovsky, 1969). 

The most complete information from the X-ray 
diffraction pattern of LC can be obtained by 
applying the cylindrically symmetric function of 
interatomic distances Q(r,z) (MacGillavry & Bruins, 
1948; Vainshtein & Chistyakov, 1975): 

Q(rz) = 2$$1F(RZ)I%(2 rR) 
× cos(2~rzZ)2zrRdRdZ. (9) 

It contains both inter- and intramolecular distances 
between atoms. The Q(r,z) function for ethyl 

p-(p-anisylamino)cinnamate (EAAC) is shown in 
Fig. 13. The packing of molecules into smectic layers 
is evident. 

Some smectics have several phase modifications 
that can be explained by the unequal values of side 
interactions of long molecules in the smectics which 
possess different 'firmness' along the axis, and the 
corresponding difference of thermal vibrations. 
Thus, aliphatic 'tails' of such molecules are prac- 
tically melted, which makes it possible for the layers 
to glide easily with respect to each other. 

In liquid crystals composed of polar molecules 
bilayers may appear, the thickness of which is less 
than the double length of the molecule, 2L, due to 
the interpenetration of aliphatic tails (Ostrovsky, 
1989). 

2= rZ= ( r )  

""1 , 4 - ' 7  
4 6 8 r (A )  

Fig. 12. Cylindrical distribution function of the molecular axis 
W(r) for PAA oriented by electric field. 

. e Wll~'~IltJP, 

~ l J ' t r ,  l~, 
;'flNZ4P~L~mlIIffI~ ~ V I ~  

- i i  i1.,1, . .  

Fig. 11. Scattering by LC. Left: X-ray diagrams; centre: model of 
structure; right: optical diffraction pattern from model. Top: 
nematic structure; bottom: smectic structure. 

Fig. 13. Two-dimensional cylindrical Patterson function Q(r,z) of 
EAAC obtained by the optical diffraction method. Solid lines 
indicate the calculated Q(r,z). 



B. K. VAINSHTEIN 151 

Structure of biomolecules in solution 

Now I would like to discuss briefly small-angle scat- 
tering, taking the case of identical particles i.e. mol- 
ecules in solution. In this case spherical averaging of 
the orientation function of molecules takes place. 
Molecules are far apart, so we can disregard the 
intermolecular interference. The relationship between 
the structure and intensity is shown in Fig. 14 
(Vainshtein, Feigin & Svergun, 1982). 

Intensities from all molecular orientations in 
reciprocal space are mixed and the I(s) function [s = 
47r(sin0/a)] is spherically symmetric and one- 
dimensional. From the intensity distribution of the 
zero peak, Guinier scattering invariants can be found 
- gyration radius R, molecular volume V, surface S, 
maximum size /max (Guinier & Fournet, 1955). It 
seems that the problem of obtaining Pmol(r) from I(s) 
cannot be solved. Still, a solution, at least for some 
objects, has been found. In order to achieve this, 
precise measurement of the I(s) curve for high values 
of S corresponding to scattering angles of 20 is 
necessary (Fig. 15). 

An important step towards solving the problem 
was made by Stuhrmann (1970), who proposed 
applying Fourier transformation in spherical coordi- 
nates and represented intensity with the aid of 

Amplitude 
Pmol(r) "7C A(s)  "P.]AI~s)] 2 

"v. 

"~ " ~  I(s) spherically 
s y i n I n e t I ' y  Of P tool a v e r a g e a  

Fig. 14. Scattering scheme for macromolecules in solution (A: 
scattering amplitudes) and Pmol(r) reconstruction. 
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o to zo 3'o ,,o ~o s c..,-fi 

Fig. 15. The scattering curves of bacteriophage T7 in solution. The 
solid line indicates the experimental curve, the dotted line the 
calculated curve. 

spherical harmonics. The electron density of the 
molecule p(r) is expressed by the series 

l 
p(r)= ~. Z ptm(r)Yi,,(O,qO = Z pt(r), (I0) 

I=0m= --/ /=0 

where z, 0, ~o are the spherical coordinates, Yj,,, the 
spherical harmonics, P~m the radial functions, and p~ 
the multipole densities. 

The intensity of small-angle scattering is 
oo / 

I(s) = 27r 2 Z Y. IA,m(S)l 2. (11) 
/ = 0 m =  - /  

The radial functions pzm(r) and scattering amplitudes 
Aim(S) a r e  connected by a Hankel transform of order 
l: 

Atr,,(s) = it(2/rr)'/Z f pt.,(s)jt(sr)r2dr, (12) 
0 

o o  

p,m(r) = (-i)l(2/rr) ' /2fAtm(S)jt(sr)r2dr. (13) 
0 

Using certain restrictions, (11) can be rewritten as 
follows: 

I(s) = 2~r 2 ~. ]A,(s)l 2, (14) 
1=0 

where [A(a)I 2 determines the radial function Pt by use 
of the Hankel transformation. 

Svergun, Feigin & Schedrin (1982) (see also Feigin 
& Svergun, 1987) proposed a method for the recon- 
struction of p(r) which consists of the following. 
First of all, it is necessary to know the symmetry of 
the object. For instance, in the case of cylindrical 
symmetry Plm = 0 if m = 0, and pl(r) = pro(r). Limit- 
ing conditions for the particle size p(r) = 0 if r > R 
are also used. As the first approximation the function 

1, r _ R 
pl°)(r)= H ( r -  R ) =  O, r > R (15) 

is chosen. Then by gradual normalization of ampli- 
tudes A~ and experimental values for I(s) we get 
L + 1 functions p}k)(r): 

,~lk)(S) = AIk)(s)[I(s)/I(k)(s)] m (16) 

p~k + ')(r)= p~k)(r)II(r- R)= ~ plk)' r <_ R (17) 
[,0, r > R .  

Then, taking into account the limiting values of the 
density of the scattering object Pmin -< p(r) <-- Pmax, we 
proceed to the next approximation of At k+ l) by (14), 
therefore approaching the true intensity I(s). The 
process shows convergence, which is estimated in a 
way similar to that used for crystals, by an integral 
reliability factor R: 

- 

R , =  f[Imode,(S)- I(S)]2S 4 I2(s)s4ds. (18) 
S I I S I 
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An example of the application of the procedure to 
the construction of an electron density map for 
bacteriophage T7, with scattering curves Iexp and Ica~, 
is shown in Fig. 15. This bacterial virus possesses an 
approximately axial symmetric structure. The result 
of structure determination at 12 A resolution is 
shown in Fig. 16. The phage head, tail, and details of 
the structure are clearly seen. Inside the head there is 
a protein core 24 nm in diameter. Regions with 
greater density probably correspond to DNA. The 
intensity curve calculated from this model (Fig. 15 - 
dashed line) is in good agreement with the experi- 
mental one. 

Structure investigation of protein crystals: catalases 
As protein crystals possess an extremely complex 
structure, the traditional methods of phase deter- 
mination used for ordinary crystals cannot be used in 
the X-ray structure investigation of proteins (cf. 
Fig. 2). 

The basic technique for such crystals is the method 
of multiple isomorphous replacement (MIR). It con- 
sists of measuring the intensity lp of the protein 
crystal and lp+/./i of the protein crystals with heavy- 
atom additions H~. Heavy-atom positions are 
determined by comparing the Patterson functions Qp 
and QP+H. Then, comparing ]Fp I and IFp+HJ, the 
phases of'lFpl are determined (Green, Ingram & 
Perutz, 1954; see also Blundell & Johnson, 1976). 

If the crystal possesses non-crystallographic sym- 
metry, for example, when there are two molecules or 
equal parts of a molecule (subunits) in the asym- 
metric unit, it is of considerable help in the structure 

1 

Fig. 16. The electron density map for bacteriophage T7; cross- 
section of cylindrical three-dimensional distribution. Solid line: 
level 0.38 A-s (hydrated protein); dashed line: 0.42 A -s (stron- 
gly hydrated DNA); thick line: 0.52A -s (slightly hydrated 
DNA). 

analysis of the protein. Another possibility is to take 
the solution flattening into account. 

If it is known that molecules in the protein crystal 
P are similar in structure to those of protein 
P' already studied, the method of molecular 
replacement can be used. Comparison of Qp and Qp,, 
construction of rotation and translation functions, 
allows determination of the orientation and position 
of the molecules in pp (Rossmann & Blow, 1962; 
Rossmann, 1990). 

The process of protein structure investigation may 
be illustrated by the example of catalases. Electron 
microscopic data and three-dimensional recon- 
struction of beef liver catalase (BLC) showed that its 
molecule (M.w. 240 000) contains four subunits and 
possesses tetrahedral symmetry (Vainshtein, Barynin 
& Gurskaya, 1968). Later, we determined the struc- 
ture of fungal catalase from Pennicillium vitale 
(PVC). MIR and non-crystallographic symmetry 
were used for the structure determination 
(Vainshtein, Melik-Adamyan, Barynin, Vagin & 
Grebenko, 1981). Crystals that yield resolution better 
than 2 A were grown in a centrifuge at 25 000 g 
acceleration. PVC has molecular weight 290 000, 
space group P3~21, a =  144-6, c =  138-8/k; the 
number of molecules in the unit cell n = 3, ~ molecule 
per asymmetric unit. MIR was used to reveal and 
determine non-crystallographic symmetry. The mol- 
ecule contains four subunits (Fig. 17). Only one of 
the 222 axes of the molecule coincides with the 2 axis 
of the space group, the other twofold axes determine 
the non-crystallographic symmetry. 

A scheme of the elements of the tertiary structure 
of the PVC subunit is shown in Fig. 18. The polypep- 
tide chain which makes up a PVC subunit contains 
670 residues. The first 56 residues are situated away 
from the subunit globule and are involved in many 
contacts with amino-acid residues of neighbouring 

~R 
Fig. 17. Quarternary structure of the PVC molecule. P, Q and R 

are twofold axes. 
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subunits. The polypeptide chain forms three dom- 
ains. The largest domain (I) consists of about 300 
residues and contains a B-barrel of eight anti-parallel 
strands forming a surface of the closed near- 
cylindrical /3-sheet, in which strands are inter- 
changed with helical segments. Then the polypeptide 
chain has an irregular segment of about 70 residues 
connecting domain (I) with the smaller domain (II). 
This domain contains 70 residues forming four 
a-helices. The C-terminal domain (III) contains 
about 150 amino acids forming a sheet of five paral- 
lel B-strands and four a-helices which are above and 
below the B-sheet. Its topology is similar to that of 
flavodoxin. 

The heme group in catalase is positioned deep 
inside the molecule in the large domain. Fig. 19 
shows the structure of the active site. On the prox- 
imal side a close contact with the iron atom is made 
by a tyrosine residue whose phenolic group occupies 
the fifth coordination position. On the distal side a 
histidine residue is nearest to the iron atom 
(Vainshtein, Melik-Adamyan, Barynin, Vagin, 
Grebenko, Borizov, Bartels, Fita & Rossmann, 1986). 

The structure of beef liver catalase has also been 
determined (Fita, Silva, Murthy & Rossmann, 1986). 
Comparison of the structures of PVC and BLC 
turned out to be very interesting (Melik-Adamyan et 
al., 1986). The conformation of the polypeptide 
chain in the first two domains and especially around 
the active site was found to be fairly similar. Surpris- 
ingly, it turned out that the 'flavodoxin' domain 
(III) in the C-terminal part of PVC subunit is com- 
pletely absent in BLC. This can probably be 

r 
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explained by processes which occurred during the 
evolution of these proteins. 

The structure of another heme-containing bac- 
terial catalase - from Micrococcus lysodeikticus 
(MLC) - was also investigated. MLC has a two- 
domain structure like BLC, and not a three-domain 
structure like PVC. The tertiary structure of domains 
(I) and (II) was fairly similar to that of BLC and 
PVC (Yusifov et al., 1989). 

It seemed interesting to check whether the catalase 
structures established were universal for all types of 
catalases. Therefore we investigated an extremely 
thermophilic bacterial catalase from Thermus Ther- 
mophilis (TTC) (Vainshtein, Melik-Adamyan, Bary- 
nin, Vagin & Grebenko, 1985), M.w. = 206 000. The 
space group is cubic, P213, a =  133.4A. Electron 

145Phe 
' o  

132Asn 

~,,,~5Tyf ~131 Gly 

Fig. 19. Active centre of PVC. The heme group is in the centre. 

• •  
(lJJ) c 

<'> 

Fig. 18. Tertiary structure of one PVC subunit: domains (I) (with 
heme), (II) and (III). a-Helices are shown by cylinders, 
B-strands by arrows. 

N 

0 

i C j 
Fig. 20. Tertiary structure of the T-catalase subunit and two Mn 

atoms inside. 
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density maps at 2.85 A resolution showed that the 
molecule is a hexamer, and allowed the course of the 
polypeptide chain in the subunit of TTC to be 
established and also revealed the active site. The 
framework of the subunit consists of four almost 
parallel long a-helices. In the high-density region, 
located in the middle of the helices, two Mn atoms 
are at the active site of TTC (Fig. 20). The packing 
mode of the central helices allows catalase T to be 
classified as a four-helical protein. This class of 
proteins contains hemoerythrine, some cytochromes, 
apoferritin, and a protein of TMW. 

Thus it was established that catalases which are 
functionally similar fall into at least two different - 
chemically and structurally - classes. 

This investigation of catalases allows the structure 
of a protein molecule to be interpreted and its 
enzymatic activity explained. 

Summing up, I would like to emphasize once again 
that diffraction studies are undergoing rapid devel- 
opment and give important new results. The develop- 
ment of the theory and experimental techniques will 
render most interesting results on the atomic struc- 
ture of crystals and the condensed state of matter in 
general. 

Many scientists took part in the investigations I 
have mentioned, and I am grateful for the aid and 
assistance I have had from them for many years. I 
would especially like to pay tribute to the late Pro- 
fessor Z. G. Pinsker in whose laboratory I started my 
investigations by electron diffraction and Professor I. 
G. Chistyakov who worked with me on liquid crys- 
tals. I would also like to thank L. I. Tatarinova, B. 
B. Zvyagin, E. A. Kosterin, L. A. Feigin, D. I. 
Svergun, D. M. Kheiker, V. R. Melik-Adamyan, B. 
B. Barynin and A. A. Vagin for their cooperation. 
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